

Opal = October's Birthstone

Earliest Known Use ~ 4000 BC: Artifacts in Kenya

'Opal' - Ancient Sanskrit or Indian word 'upala', meaning 'precious stone' (Sinkankas, 1959)

Imported to Rome ~ 100 BC, probably from volcanichosted deposits in Hungary; Romans *believed* the source to be India ('Oriental').

(Early Marketing)

Cortez: Early 1500s, Honduras opals to Europe sold as 'Hungarian' due to European cultural bias

Australian black opals: Marketing before acceptance

OPAL AGGREGATE of HYDRATED SILICA SiO₂-n(H₂O)

Cryptocrystalline to Amorphous (extremely small crystals) (not crystalline)

Precipitate from Si-rich Aqueous Solutions within Vugs, Fractures, & Pores

Mostly in Volcanic or Sedimentary Rocks
May Replace Organic Material

OPAL DETAILS

H = 5.5 to 6.5 Mohs SPG = 1.9 to 2.25 Based on Porosity & Impurities Fracture = Conchoidal

 H_2O Content = 2% to 20% (weight)

H₂O Loosely Bound within Structure: Driven off by Dryness or Heat → may cause Crazing (cracks)

Or turn opal opaque & white

More H₂O → Greater Translucency & Crazing Less H₂O → Increased Opacity & Less Crazing

Luster = Vitreous to Resinous, or Pearly

Fluorescence <u>Not</u> Distinctive (Some Opals Fluoresce, Many Do Not)

Opal may grade into Chalcedony

Sweetwater Moss Agate Associated With Opal at Cedar Rim

Australia
Produces
95% of
world's
Precious
Opal

(Only Australian state <u>not</u> known to host precious opal is Tasmania)

Opal Classification

Precious Opal - Shows <u>Play of Color</u> (<u>NOT</u> called 'fire' as in other gemstones)

Play of Color = Spectrally pure individual colors

Combinations in patterns that shift in shape, hue, and dispersion as view angle & light source changes

Caused by diffraction of white light through microstructure of orderly arranged silica spheres

Potch = Old Australian miner's term for valueless opal, even with minor play of color
Disordered silica spheres or cryptocrystalline
No color play except rare small point sources

Common Opal = No color play except rare small point sources Fire Opal = Translucent to opaque yellow to orange Hyalite = Clear, transparent

Potch / Common Opal Disordered, Irregular Shaped Silica Spheres Or Cryptocrystalline (No Spheres) Structure

Precious Opal - Areas of close-packed, aggregates of *Uniform-sized* amorphous silica spheres ~ 1500 Å -3500 Å diameter

(Darragh, Gaskin, and Sanders, 1976).

Large Spheres
Diffract
Red Light
(Longer λ)
Small Spheres
Diffract
Blue Light
(Shorter λ)

White light Diffraction through Micro-structured Orderly arranged silica spheres → Play of Color

Precious Opal

Requires Stable Depositional Conditions

- H₂O + Dissolved Silica
- Steadily Renewing Supply of Both Needed To

Precipitate Multiple Layers

Uniform Silica Spheres

Rare Large Spheres (2500-3500 Å = Red)

Need Longer Stable Growth Time Than

Small (1500 - 2000 Å = Blue)

[10 million Å = 1 mm]

Thin Irregular Seams of Mintabie Precious Opal within Common Opal

<u>Largest Precious Opal</u> Uncut Olympic Australis =10.4 lbs

Found at Coober Pedy in 1956

Most Precious Opal Seams: 2 to 14 mm
Weight = Fraction Carat to ~ 4 ct

Queensland's Boulder Opal Generally: Thin Fracture Fillings of Fine Opal (Keller, 1990).

Common Opal = Tens of Feet Thick

Weights = Ibs to tons

Thin Seam Lightning Ridge Opal

Same Opal Seam Different View

Varieties & Marketing

- **Boulder Opal** Sandstone or Ironstone Concretion broken by thin veins of precious or common opal
- Marketed with part of the host rock attached
- Characteristic many Queensland deposits
- Was considered worthless potch before marketing

- Matrix Opal Infillings of holes or spaces (matrix) between grains of host rock in which it formed
- Was considered worthless potch before marketing

Matrix Opal Miocene-Eocene (~12 to 40 Ma) Catahoula Fm Zones mms to cms Thick SE of Vicksburg, MS

Precious Opal Beneath
Impermeable Si-rich Matrix
& Quartz Sand

Hillside Above Flood-plain

D.F. Chandler, 2012 (Personal Communication)

Common Opal Generally More Durable Than Precious Withstands Greater Temperature & Humidity Changes Without Crazing Translucent Mintabie Common Opal

Age of Opal

Precious Opal Geologically Young <100 Ma

Can't Survive Long Periods of Weathering
Dryness & Heat can Destroy

Can't Survive <u>Deep</u> Burial & Accompanying Structural Adjustments - Heat & Pressure

Deposition Rates: 1cm/5Ma to 1+mm/yr

Formation may be Ongoing in some areas (Partially Replaced Bones & Wood Fence Posts)

Australian Sediment-Hosted Opal

Base of <u>deep weathering profile</u> accompanied by intense bleaching

* Beneath silicified cap-rock or other thin silicified layers immediately above opal

Near-surface: 5m to 40m depth (steady-state depositional environment)

* Along contacts between <u>porous</u> kaolinized sandstone and underlying <u>non-porous</u> montmorillonitic claystone

May fill fractures & fault planes

Sediment-Hosted Precious Opal

Australian Sediment-Hosted Opal Genetically Associated With Sulfates

- > Gypsum (CaSO₄ 2H₂O) Andamooka, SA
- For a point of the control of the
- ► Gypsum and Glauberite (Na₂Ca(SO₄)₂) White Cliffs, NSW
- > Alunite Lightning Ridge, NSW

Discontinuous Gypsum Veins are found above many Australian opal deposits

Other Associations: Kaolinite, Montmorillonite, Bentonite, Silicified Ironstone (concretionary iron)

Many Different Silica Sources All Directions of Si-rich H₂0 Movement Possible

- Volcanic ash beds (common in WY)
- Silicious micro-fossils
- Diagenesis of bentonites
- Kaolinization in situ of detrital feldspars
- Deep chemical weathering of pyroxenite (Arkansas), and serpentinite (Czech Republic and Slovakia)

Volcanic-Hosted Opals: Two Types

- 1 Silica-Rich Meteoric Waters (weathering processes): Similar to sediment-hosted deposits; show well-defined grain pattern (Darragh, Gaskin, and Sanders, 1976)
- 2 Post-Volcanic Hydrothermal Activity: Generally transparent; <u>no noticeable grain</u> <u>pattern</u>; color play in diffuse bands

Post-Volcanic Hydrothermal Opals

Tiny Silica Spheres

(close packed arrays, few interstitial voids)

Contain More Water than sediment-hosted (less stable, greater tendency to craze; some

exceptions in Mexican fire opals)

Deposition Typically within Rounded Voids

(After gas bubbles)

Deposited at <u>higher than normal ground water</u> <u>temperatures</u>

Volcanic-Hosted Opal - Spencer, ID

WY Opal & Potential Host Rocks

Reported Host Rocks For Wyoming Opal

Quaternary detrital materials

Quaternary geyser deposits

Miocene-Pliocene South Pass Fm

Upper Miocene Moonstone Fm

Miocene Browns Park Fm

Miocene Split Rock Fm

Miocene Arikaree Fm

Oligocene White River Fm ¹

Eocene Absaroka volcanic sediments ²

Eocene Wagon Bed Fm

Eocene Wasatch Fm (Cathedral Bluffs Tongue)

Eocene Battle Springs Fm

Eocene Wind River Fm

Eocene Alkalic Igneous Rocks (Black Hills, Rattlesnake Hills)

Lower Cretaceous Fall River Fm

Early Proterozoic quartz monzonite (Hog Park)

Archean amphibolite schist (Tin Cup area)

Notes: 1 Abundant common opal across WY; 2 Precious opal

Thin Seam Opal Eocene **Wagon Bed** Fm Rattlesnake Hills

- Wind River Basin/Gas Hills Minor opal and uraniferous opal in
- Pathfinder Reservoir area Clear moss opal & common white opal in
- Lost Creek-Cyclone Rim Area Common opal, gypsum, carbonates, and uranium in east of Lost Creek along Cyclone Rim fault zone
- Miller Hill Area 25 mi. S. of Rawlins Opal, chalcedony, calcite, uranophane in
- Southern Black Hills Opal, uranium in

White River Formation Opal & Chalcedony SE of Chugwater

Cedar Rim Opal White River Fm

Nodules in Altered Tuff: Replacements, Fracture & Void Fillings

Opal Cement in Arkose

Wagon Bed Fm Split Rock Fm

Common Opal – Wagon Bed Fm

Opaque Green

Replacement Nodules

Common Opal Cabochons Cedar Rim, WY

Opal Exploration

Sheepherders, Hunters, & Horsemen

Are common denominators in Discovery of many Australian opal fields

Low Specific Gravity & Brittleness prevent concentration in placers

(Except Residual Deposits at the source area)

Sedimentary-Hosted Precious Opal Hunting Targets

- Silica-rich areas
- Bedding planes, fractures & faults
- <u>Above</u> impermeable or low permeability zones
- Below gypsum-rich or other salt zones
- Within or Below ironstone or siliceous concretionary materials
- Less than 40m below ground surface

LOOK FOR TINY OPAL SPHERES!

NOT LARGE SNOWBALLS!